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We report on a study of Gilbert damping due to particle-hole pair excitations in conducting ferromagnets. We
focus on a toy two-band model and on a four-band spherical model which provide an approximate description
of ferromagnetic �Ga,Mn�As. These models are sufficiently simple that disorder-ladder-sum vertex corrections
to the long-wavelength spin-spin response function can be summed to all orders. An important objective of this
study is to assess the reliability of practical approximate expressions which can be combined with electronic
structure calculations to estimate Gilbert damping in more complex systems.
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I. INTRODUCTION

The key role of the Gilbert parameter �G in
current-driven1 and precessional2 magnetization reversal has
led to a renewed interest in this important magnetic material
parameter. The theoretical foundations which relate Gilbert
damping to the transverse spin-spin response function of the
ferromagnet have been in place for some time.3,4 It has nev-
ertheless been difficult to predict trends as a function of tem-
perature and across materials systems partly because damp-
ing depends on the strength and nature of the disorder in a
manner that requires a more detailed characterization than is
normally available. Two groups have recently5 reported suc-
cessful applications to transition-metal ferromagets of the
torque-correlation formula4–6 for �G. This formula has the
important advantage that its application requires knowledge
only of the band structure, including its spin-orbit �SO� cou-
pling, and of Bloch state lifetimes. The torque-correlation
formula is physically transparent and can be applied
with relative ease in combination with modern
spin-density-functional-theory7 �SDFT� electronic structure
calculations. In this paper we compare the predictions of the
torque-correlation formula with Kubo-formula self-
consistent Born-approximation results for two different rela-
tively simple model systems, an artificial two-band model of
a ferromagnet with Rashba spin-orbit interactions, and a
four-band model which captures the essential physics of
�III,Mn�V ferromagnetic semiconductors.8 The self-
consistent Born-approximation theory for �G requires that
ladder-diagram vertex corrections be included in the trans-
verse spin-spin response function. Since the Born approxi-
mation is exact9 for weak scattering, we can use this com-
parison to assess the reliability of the simpler and more
practical torque-correlation formula. We conclude that the
torque-correlation formula is accurate when the Gilbert
damping is dominated by intraband excitations of the
transition-metal Fermi sea but that it can be inaccurate when
it is dominated by interband excitations.

Our paper is organized as follows. In Sec. II we explain
how we evaluate the transverse spin-spin response function
for simple model ferromagnets. Section III discusses our re-
sult for the two-band Rashba model, while Sec. IV summa-
rizes our findings for the four-band �III,Mn�V model. We
conclude in Sec. V with a summary of our results and rec-

ommended best practices for the use of the torque-
correlation formula.

II. GILBERT DAMPING AND TRANSVERSE SPIN-
RESPONSE FUNCTION

A. Realistic SDFT versus s-d and p-d models

We view the two-band s-d and four-band p-d models
studied in this paper as toy models which capture the essen-
tial features of metallic magnetism in systems that are, at
least in principle,10 more realistically described using SDFT.
The s-d and p-d models correspond to the limit of ab initio
SDFT in which �i� the majority-spin d bands are completely
full and the minority-spin d bands are completely empty, �ii�
hybridization between s or p and d bands is relatively weak,
and �iii� there is exchange coupling between d and s or p
moments. In a recent paper6 we have proposed the following
expression for the Gilbert-damping contribution from
particle-hole excitations in SDFT bands:

�G =
1

S0
�� Im��̃x,x

QP� , �1�

where �̃x,x
QP is a response function which describes how the

quasiparticle bands change in response to a spatially smooth
variation in magnetization orientation and S0 is the total spin.
Specifically,

�̃�,�
QP ��� = �

ij

f j − f i

�ij − � − i�
�j�s��0�r���i��i�s��0�r���j� , �2�

where � and � label the x and y transverse spin directions
and the easy direction for the magnetization is assumed to be
the ẑ direction. In Eq. �2� �i�, f i, and �ij are Kohn-Sham
eigenspinors, Fermi factors, and eigenenergy differences, re-
spectively, s� is a spin operator, and �0�r�� is the difference
between the majority-spin and minority-spin exchange-
correlation potentials. In the s-d and p-d models �0�r�� is
replaced by a phenomenological constant, which we denote
by �0 below. With �0�r�� replaced by a constant, �̃x,x

QP reduces
to a standard spin-response function for noninteracting qua-
siparticles in a possibly spin-dependent random static
external potential. The evaluation of this quantity, and in
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particular the low-frequency limit in which we are interested,
is nontrivial only because disorder plays an essential role.

B. Disorder perturbation theory

We start by writing the transverse spin-response function
of a disordered metallic ferromagnet in the Matsubara for-
malism,

�̃xx
QP�i�� = − V

�0
2

�
�
�n

P�i�n,i�n + i�� , �3�

where the minus sign originates from fermionic statistics, V
is the volume of the system, and

P�i�n,i�n + i�� 	 
 dDk

�2��D	�,��i�n,i�n + i�;k�G��i�n

+ i�,k�s�,�
x �k�G��i�n,k� . �4�

In Eq. �4� ��k� is a band eigenstate at momentum k, D is the
dimensionality of the system, s�,�

x �k�= ��k�sx��k� is the spin-
flip matrix element, 	�,��k� is its vertex-corrected counter-
part �see below�, and

G��i�n,k� = �i�n + EF − Ek,� + i
1

2
k,�
sgn��n��−1

. �5�

We have included disorder within the Born approximation by
incorporating a finite lifetime 
 for the quasiparticles and by
allowing for vertex corrections at one of the spin vertices.

The vertex function in Eq. �4� obeys the Dyson equation
�Fig. 1�,

	�,��i�n,i�n + i�;k�

= s�,�
x �k� +
 dDk�

�2��Dua�k − k��s�,��
a �k,k��G���i�n,k��

�	��,���i�n,i�n + i�;k��G���i�n + i�,k��

�s��,�
a �k�,k� , �6�

where ua�q�	naVa
2�q� �a=0,x ,y ,z�, na is the density of

scatterers, Va�q� is the scattering potential �dimensions:
�energy�� �volume��, and the overline stands for disorder
averaging.11,12 Ward’s identity requires that ua�q� and 
k,� be
related via the Fermi golden rule,

1


�k
= 2�


k�
ua�k − k���

��

s�,��
a s��,�

a ��Ek� − Ek���� , �7�

where 
k	
dDk / �2��D. In this paper we restrict ourselves to
spin-independent �a=0� disorder and spin-dependent disor-

der oriented along the equilibrium-exchange-field direction
�a=z�.13 Performing the conventional14 integration around
the branch cuts of P, we obtain

�̃xx
QP�i�� = V�0

2

−



 d�

2�i
f����P�� + i�,� + i�� − P�� − i�,�

+ i�� + P�� − i�,� + i�� − P�� − i�,� − i��� , �8�

where f��� is the Fermi function. Next, we perform an ana-
lytical continuation i�→�+ i� and take the imaginary part
of the resulting retarded response function. Assuming low
temperatures, this yields

�G =
�0

2

2�s0
�Re�P�− i�,i��� − Re�P�i�, + i����

=
�0

2

2�s0
Re�PA,R − PR,R� , �9�

where s0=S0 /V,

PR�A�,R = 

k

	�,�
R�A�,R�k�G�

R�0,k�s�,�
x �k�G�

R�A��0,k� , �10�

and GR�A��0,k� is the retarded �advanced� Green’s function at
the Fermi energy. The principal difficulty of Eq. �9� resides
in solving the Dyson equation for the vertex function. We
first discuss our method of solution in general terms before
turning in Secs. III and IV to its application to the s-d and
p-d models.

C. Evaluation of impurity vertex corrections for multiband
models

Equation �6� encodes disorder-induced diffusive correla-
tions between itinerant carriers and is an integral equation of
considerable complexity. Fortunately, it is possible to trans-
form it into a relatively simple algebraic equation provided
that the impurity potentials are short ranged in real space.

Referring back to Eq. �6� it is clear that the solution of the
Dyson equation would be trivial if the vertex function was
independent of momentum. That is certainly not the case in
general because the matrix elements of the spin operators
may be momentum dependent. Yet, for short-range scatterers
the entire momentum dependence of the vertex matrix ele-
ments comes from the eigenstates alone,

s�,��
a �k,k�� = �

m,m�

��k�m��m����k��sm,m�
a . �11�

This property motivates our solution strategy which charac-
terizes the momentum dependence of the vertex function by
expanding it in terms of the eigenstates of sz �sx or sy bases
would work equally well�,

	�,��k� = ��k�	��k� = �
m,m�

��k�m�	m,m��m���k� , �12�

where �m� is an eigenstate of sz, with eigenvalue m. Plugging
Eqs. �11� and �12� into Eq. �6� demonstrates that, as ex-
pected, 	m,m� is independent of momentum. After canceling

α,k

Λ

β,k β,k

α,k

sx

β,k
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FIG. 1. Dyson equation for the renormalized vertex of the trans-
verse spin-spin response function. The dotted line denotes impurity
scattering.
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common factors from both sides of the resulting expression
and using �qua�q�=0 �a=0,z�, we arrive at

	m,m�
R�A�,R = sm,m�

x + �
l,l�

Um,m�:l,l�
R�A�,R

	l,l�
R�A�,R, �13�

where

Um,m�:l,l�
R�A�,R 	 �u0 + uzmm��


k
�m��k�G�

R�A��0,k���k�l�

��l���k�G�
R�0,k���k�m�� . �14�

Equations �12�–�14� provide a solution for the vertex func-
tion that is significantly easier to analyze than the original
Dyson equation.

III. GILBERT DAMPING FOR A MAGNETIC TWO-
DIMENSIONAL ELECTRON GAS

The first model we consider is a two-dimensional
electron-gas �2DEG� model with ferromagnetism and
Rashba spin-orbit interactions. We refer to this as the mag-
netic 2DEG �M2DEG� model. This toy model is almost
never even approximately realistic,15 but a theoretical study
of its properties will prove useful in a number of ways. First,
it is conducive to a fully analytical evaluation of the Gilbert
damping, which will allow us to precisely understand the
role of different actors. Second, it enables us to explain in
simple terms why higher-order vertex corrections are signifi-
cant when there is spin-orbit interaction in the band struc-
ture. Third, as we demonstrate below the Gilbert damping of
a M2DEG has qualitative features similar to those of
�Ga,Mn�As.

The band Hamiltonian of the M2DEG model is

H =
k2

2m
+ bk · � , �15�

where bk= �−�ky ,�kx ,�0�, �0 is the difference between
majority- and minority-spin exchange-correlation potentials,
� is the strength of the Rashba SO coupling, and �� =2s� is a
vector of Pauli matrices. The corresponding eigenvalues and
eigenstates are

E�,k =
k2

2m
� ��0

2 + �2k2, �16�

��k� = e−isz�e−isy���� , �17�

where �=−tan−1�kx /ky� and �=cos−1��0 /��0
2+�2k2� are the

spinor angles and �=� is the band index. It follows that

�m��,k� = �m�e−isz�e−isy���� = e−im�dm,���� , �18�

where dm,�= �m�e−isy���� is a Wigner function for J=1 /2 an-
gular momentum.16 With these simple spinors, the azimuthal
integral in Eq. �14� can be performed analytically to obtain

Um,m�:l,l�
R�A�,R = �m−m�,l−l��u

0 + uzmm���
�,�

 dkk

2�
dm�G�

R�A�

��k�dl����dm�����G�
R�k�dl����� , �19�

where the Kronecker delta reflects the conservation of the
angular momentum along z, owing to the azimuthal symme-
try of the problem. In Eq. �19�

dm,m� = �cos��/2� − sin��/2�
sin��/2� cos��/2�

� , �20�

and the retarded and advanced Green’s functions are

G+
R�A� =

1

− �k − bk + �− �i�+
,

G−
R�A� =

1

− �k + bk + �− �i�−
, �21�

where �k=
k2−kF

2

2m , bk=��0
2+�2k2, and �� is �half� the golden-

rule scattering rate of the band quasiparticles. In addition,
Eq. �13� is readily inverted to yield

	+,+
R�A�,R = 	−,−

R�A�,R = 0,

	+,−
R�A�,R =

1

2

1

1 − U+,−:+,−
R�A�,R ,

	−,+
R�A�,R =

1

2

1

1 − U−,+:−,+
R�A�,R . �22�

In order to make further progress analytically we assume that
��0 ,�kF ,���EF=kF

2 /2m. It then follows that �+��−	�

and that �=�N2Du0+�N2D
uz

4 	�0+�z. Equations �19� and
�20� combine to give

U−,+:−,+
R,R = U+,−:+,−

R,R = 0,

U−,+:−,+
A,R = ��0 − �z�� i

− b + i�
cos4��

2
� +

i

b + i�
sin4��

2
�

+
2

�
cos2��

2
�sin2��

2
�� ,

U+,−:+,−
A,R = �U−,+:−,+

A,R ��, �23�

where b���2kF
2 +�0

2 and cos ���0 /b. The first and second
terms in square brackets in Eq. �23� emerge from interband
transitions ���� in Eq. �19��, while the last term stems from
intraband transitions ��=��. Amusingly, U vanishes when
the spin-dependent scattering rate equals the Coulomb scat-
tering rate ��z=�0�; in this particular instance vertex correc-
tions are completely absent. On the other hand, when �z=0
and b�� we have U−,+:−,+

A,R �U+,−:+,−
A,R �1, implying that ver-

tex corrections strongly enhance Gilbert damping �recall Eq.
�22��. We will discuss the role of vertex corrections more
fully below.

After evaluating 	�k� from Eqs. �12�, �22�, and �23�, the
last step is to compute
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PR�A�,R = 

k

	�,�
R�A�,R�k�s�,�

x �k�G�
R�A��k�G�

R�k� . �24�

Since we are assuming that the Fermi energy is the largest
energy scale, the integrand in Eq. �24� is sharply peaked at
the Fermi surface, leading to PR,R�0. In the case of spin-
independent scatterers ��z=0→�=�0�, tedious but straight-
forward algebra takes us to

�G�uz = 0� =
N2D�0

2

4s0�0

��2kF
2��b2 + �0

2 + 2�0
2�

�b2 + �0
2�2 + 4�0

2�0
2 . �25�

Equation �29� agrees with the results published in the recent
literature.17 We note that �G�uz=0� vanishes in the absence
of SO interactions, as expected. It is illustrative to expand
Eq. �25� in the b��0 regime,

�G�uz = 0� �
N2D�0

2

2s0
� �2kF

2

2�b2 + �0
2�

1

�0
+

�4kF
4

�b2 + �0
2�3�0� ,

�26�

which displays intraband ���0
−1� and interband ���0� con-

tributions separately. The intraband damping is due to the
dependence of band eigenenergies on magnetization
orientation—the breathing Fermi-surface effect4 which pro-
duces more damping when the band quasiparticles scatter
infrequently because the population distribution moves fur-
ther from equilibrium. The intraband contribution to damp-
ing therefore tends to scale with the conductivity. For stron-
ger disorder, the interband term in which scattering relaxes
spin orientations takes over and �G is proportional to the
resistivity. Insofar as phonon scattering can be treated as
elastic, the Gilbert damping will often show a nonmonotonic
temperature dependence with the intraband mechanism
dominating at low temperatures when the conductivity is
large and the interband mechanism dominating at high tem-
peratures when the resistivity is large.

For completeness, we also present analytic results for the
case where �=�z in the b��z regime,

�G�u0 = 0� �
N2D�0

2

2s0
� 1

�z

�2kF
2

6b2 − 2�0
2 + �z

3b4 + 6b2�0
2 − �0

4

�3b2 − �0
2�3 � .

�27�

This expression illustrates that SO interactions in the band
structure are a necessary condition for the intraband transi-
tion contribution to �G. The interband contribution survives
in the absence of SO as long as the disorder potential is spin
dependent. Interband scattering is possible for spin-
dependent disorder because majority and minority-spin states
on the Fermi surface are not orthogonal when their potentials
are not identical. Note incidentally the contrast between Eqs.
�26� and �27�—in the former the interband coefficient is most
suppressed at weak intrinsic SO interaction while in the latter
it is the intraband coefficient which gets weakest for small
�kF.

More general cases relaxing the ��0 ,�kF ,���EF assump-
tion must be studied numerically; the results are collected in
Figs. 2–4. Figure 2 highlights the inadequacy of completely
neglecting vertex corrections in the limit of weak spin-orbit

interaction; the inclusion of the leading-order vertex correc-
tion largely solves the problem. However, Figs. 2 and 3 to-
gether indicate that higher-order vertex corrections are no-
ticeable when disorder or spin-orbit coupling is strong. In
light of the preceding discussion the monotonic decay in Fig.
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1/(εFτ0)
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1.0

α G

∆0=εF/3 ; λ kF=1.2 εF ; u
0
=3 u

z

no vertex corrections
1st vertex correction
all vertex corrections

FIG. 3. �Color online� M2DEG: Gilbert damping for strong SO
interactions ��kF=1.2EF�4�0�. In this case higher-order vertex
corrections matter �up to 20%� even at low disorder. This suggests
that higher-order vertex corrections will be important in real ferro-
magnetic semiconductors because their intrinsic SO interactions are
generally stronger than their exchange splittings.
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∆0=0.3 εF ; λ kF = 0 ; u
0
=3 u

z
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FIG. 2. �Color online� M2DEG: Gilbert damping in the absence
of spin-orbit coupling. When the intrinsic spin-orbit interaction is
small, the first vertex correction is sufficient for the evaluation of
Gilbert damping provided that the ferromagnet exchange splitting is
large compared to the lifetime broadening of the quasiparticle en-
ergies. For more disordered ferromagnets �EF
0�5 in this figure�
higher-order vertex corrections begin to matter. In either case vertex
corrections are significant. In this figure 1 /
0 stands for the scatter-
ing rate off spin-independent impurities, defined as a two-band
average at the Fermi energy, and the spin-dependent and spin-
independent impurity strengths are chosen to satisfy u0=3uz.
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3 may appear surprising because the interband contribution
presumably increases with �. Yet, this argument is strictly
correct only for weakly spin-orbit coupled systems, where
the crossover between interband and intraband dominated
regimes occurs at low disorder. For strongly spin-orbit
coupled systems the crossover may take place at a scattering
rate that is �i� beyond experimental relevance and/or �ii�
larger than the band splitting, in which case the interband
contribution behaves much like its intraband partner, i.e.,
O�1 /��. Nonmonotonic behavior is restored when the spin-
orbit splitting is weaker, as shown in Fig. 4.

Finally, our analysis opens an opportunity to quantify the
importance of higher-order impurity vertex corrections.
Kohno et al.12 claimed that the bare vertex along with the
first vertex correction fully captures the Gilbert damping of a
ferromagnet provided that �0
�1. To first order in U the
vertex function is

	m,m�
R�A�,R = sm,m�

x + �
ll�

Um,m�:l,l�
R�A�,R sl,l�

x . �28�

Taking �=�z for simplicity, we indeed get

lim
�→0

�G � A� + O��2� ,

A�1�
A�
�

= 1, �29�

where A�1� contains the first vertex correction only and A�
�
includes all vertex corrections. However, the state of affairs

changes after turning on the intrinsic SO interaction, where-
upon Eq. �29� transforms into

�G�� � 0� � B� + C
1

�
,

B�1�
B�
�

=
�0

2�3b2 − �0
2�3�3b2 + �0

2�
4b6�3b4 + 6b2�0

2 − �0
4�

,

C�1�
C�
�

=
�b2 + �0

2��3b2 − �0
2�

4b4 . �30�

When �0��kF, both intraband and interband ratios show a
significant deviation from unity,18 to which they converge as
�→0. In order to understand this behavior, let us look back
at Eq. �22�. There, we can formally expand the vertex func-
tion as 	= 1

2�n=0

 Un, where the nth-order term stems from the

nth vertex correction. From Eq. �23� we find that when �
=0, Un�O��n� and thus n�2 vertex corrections will not
matter for the Gilbert damping, which is O��� �Ref. 19�
when EF��. In contrast, when ��0 the intraband term in
Eq. �23� is no longer zero, and consequently all powers of U
contain O��0� and O��1� terms. In other words, all vertices
contribute to O�1 /�� and O��� in the Gilbert damping, espe-
cially if �kF /�0 is not small. This conclusion should prove
valid beyond the realm of the M2DEG because it relies only
on the mantra “intraband �O�1 /��, interband �O���.” Our
expectation that higher-order vertex corrections be important
in �Ga,Mn�As will be confirmed numerically in Sec. IV.

IV. GILBERT DAMPING FOR (Ga,Mn)As

�Ga,Mn�As and other �III,Mn�V ferromagnets are like
transition metals in that their magnetism is carried mainly by
d orbitals but are unlike transition metals in that neither ma-
jority nor minority-spin d orbitals are present at the Fermi
energy. The orbitals at the Fermi energy are very similar to
the states near the top of the valence band of the host �III,V�
semiconductor, although they are of course weakly hybrid-
ized with the minority- and majority-spin d orbitals. For this
reason the electronic structure of �III,Mn�V ferromagnets is
extremely simple and can be described reasonably accurately
with the phenomenological model which we employ in this
section. Because the top of the valence band in �III,V� semi-
conductors is split by spin-orbit interactions, spin-orbit cou-
pling plays a dominant role in the bands of these ferromag-
nets. An important consequence of the strong SO interaction
in the band structure is that diffusive vertex corrections in-
fluence �G significantly at all orders; this is the central idea
of this section.

Using a p-d mean-field theory model8 for the ferromag-
netic ground state and a four-band spherical model20 for the
host semiconductor band structure, Ga1−xMnxAs may be de-
scribed by

H =
1

2m
���1 +

5

2
�2�k2 − 2�3�k · s�2� + �0sz, �31�

where s is the spin operator projected onto the J=3 /2 total
angular-momentum subspace at the top of the valence band
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FIG. 4. �Color online� M2DEG: Gilbert damping for moderate
SO interactions ��kF=0.2�0�. In this case there is a crossover be-
tween the intraband dominated and the interband dominated re-
gimes, which gives rise to a nonmonotonic dependence of Gilbert
damping on disorder strength. The stronger the intrinsic SO relative
to the exchange field is, the higher is the value of disorder at which
the crossover occurs. This is why the damping is monotonically
increasing with disorder in Fig. 2 and monotonically decreasing in
Fig. 3.
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and ��1=6.98, �2=�3=2.5� are the Luttinger parameters for
the spherical-band approximation to GaAs. In addition, �0
=Jp-dSNMn is the exchange field, Jp-d=55 meV nm3 is the
p-d exchange coupling, S=5 /2 is the spin of the Mn ions,
NMn=4x /a3 is the density of Mn ions, and a=0.565 nm is
the lattice constant of GaAs.

The �0=0 eigenstates of this model are

��̃,k� = e−isz�e−isy���̃� , �32�

where ��̃� is an eigenstate of sz with eigenvalue �̃. Unfortu-
nately, the analytical form of the �0�0 eigenstates is un-
known. Nevertheless, since the exchange field preserves the
azimuthal symmetry of the problem, the � dependence of the
full eigenstates ��k� will be identical to that of Eq. �32�. This
observation leads to Um,m�:l,l���m−m�,l−l�, which simplifies
Eq. �14�. �G can be calculated numerically following the
steps detailed in Secs. I and II; the results are summarized in
Figs. 5 and 6. Note that vertex corrections moderately in-
crease the damping rate, as in the case of a M2DEG model
with strong spin-orbit interactions. Figure 5 underlines both
the importance of higher-order vertex corrections in �Ga,M-
n�As and the monotonic decay of the damping as a function
of scattering rate. The latter signals the supremacy of the
intraband contribution to damping, accentuated at larger hole
concentrations. Had the intrinsic spin-orbit interaction been
substantially weaker,21 �G would have traced a nonmono-
tonic curve as shown in Fig. 6. The degree to which the
intraband breathing Fermi-surface model effect dominates
depends on the details of the band structure and can be in-
fluenced by corrections to the spherical model which we

have adopted here to simplify the vertex-correction calcula-
tion. The close correspondence between Figs. 5 and 6 and
Figs. 3 and 4 reveals the success of the M2DEG as a versa-
tile gateway for realistic models and justifies the extensive
attention devoted to it in this paper and elsewhere.

V. ASSESSMENT OF THE TORQUE-CORRELATION
FORMULA

Thus far we have evaluated the Gilbert damping for a
M2DEG model and a �Ga,Mn�As model using the �bare�
spin-flip vertex �� ,k�sx�� ,k� and its renormalized counter-
part �� ,k�	�� ,k�. The vertex-corrected results are expected
to be exact for 1 /
 small compared to the Fermi energy. For
practical reasons, state-of-the-art band-structure calculations5

forgo impurity vertex corrections altogether and instead em-
ploy the torque-correlation matrix element, which we shall
denote as �� ,k�K�� ,k� �see below for an explicit expres-
sion�. In this section we compare damping rates calculated
using s�,�

x vertices with those calculated using K�,� vertices.
We also compare both results with the exact damping rates
obtained by using 	�,�. The ensuing discussion overlaps
with and extends our recent preprint.6

We shall begin by introducing the following identity:4

��,k�sx��,k� = i��,k��sz,sy���,k�

=
i

�0
�Ek,� − Ek,����,k�sy��,k�

−
i

�0
��,k��Hso,s

y���,k� . �33�

In Eq. �33� we have decomposed the mean-field quasiparticle
Hamiltonian into a sum of spin-independent, exchange spin-
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FIG. 5. �Color online� GaMnAs: higher-order vertex corrections
make a significant contribution to Gilbert damping due to the
prominent spin-orbit interaction in the band structure of GaAs. x is
the Mn fraction, and p is the hole concentration that determines the
Fermi energy EF. In this figure, the spin-independent impurity
strength u0 was taken to be three times larger than the magnetic
impurity strength uz. 1 /
0 corresponds to the scattering rate off
Coulomb impurities and is evaluated as a four-band average at the
Fermi energy.
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FIG. 6. �Color online� GaMnAs: when the spin-orbit splitting is
reduced �in this case by reducing the hole density to 0.2 nm−3 and
artificially taking �3=0.5�, the crossover between interband and in-
traband dominated regimes produces a nonmonotonic shape of the
Gilbert damping, much like in Fig. 4. When either �2 or p is made
larger or x is reduced, we recover the monotonic decay of Fig. 5.
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splitting, and other spin-dependent terms H=Hkin+Hso+Hex,
where Hkin is the kinetic �spin-independent� part, Hex=�0sz

is the exchange spin-splitting term, and Hso is the piece that
contains the intrinsic spin-orbit interaction. The last term on
the right-hand side of Eq. �33� is the torque-correlation ma-
trix element used in band-structure computations,

��,k�K��,k� 	 −
i

�0
��,k��Hso,s

y���,k� . �34�

Equation �33� allows us to make a few general remarks on
the relation between the spin-flip and torque-correlation ma-
trix elements. For intraband matrix elements, one immedi-
ately finds that s�,�

x =K�,� and hence the two approaches
agree. For interband matrix elements the agreement between
s�,�

x and K�,� should be nearly identical when the first term in
the final form of Eq. �33� is small, i.e., when22 �Ek,�−Ek,��
��0. Since this requirement cannot be satisfied in the
M2DEG, we expect that the interband contributions from K
and sx will always differ significantly in this model. More
typical models, such as the four-band model for �Ga,Mn�As,
have band crossings at a discrete set of k points, in the neigh-
borhood of which K�,��s�,�

x . The relative weight of these
crossing points in the overall Gilbert damping depends on a
variety of factors. First, in order to make an impact they must
be located within a shell of thickness 1 /
 around the Fermi
surface. Second, the contribution to damping from those spe-
cial points must outweigh that from the remaining k points in
the shell; this might be the case for instance in materials with
weak spin-orbit interaction and weak disorder, where the
contribution from the crossing points would go like 
 �large�
while the contribution from points far from the crossings
would be �1 /
 �small�. Only if these two conditions are
fulfilled should one expect good agreement between the in-
terband contributions from spin-flip and torque-correlation
formulas. When vertex corrections are included, of course,
the same result should be obtained using either form for the
matrix element since all matrix elements are between essen-
tially degenerate electronic states when disorder is treated
nonperturbatively.6,17

In the remaining part of this section we shall focus on a
more quantitative comparison between the different formu-
las. For the M2DEG it is straightforward to evaluate �G ana-
lytically using K instead of sx and neglecting vertex correc-
tions; we obtain

�G
K =

N2D�0

8s0
��2kF

2

b2

�0

�
+ ��2kF

2

�0b
�2 ��0

�2 + b2� , �35�

where we assumed �� ,�kF ,�0���F. By comparing Eq. �35�
with the exact expression Eq. �25�, we find that the intraband
parts are in excellent agreement when �0��kF, i.e., when
vertex corrections are relatively unimportant. In contrast, the
interband parts differ markedly regardless of the vertex cor-
rections. These trends are captured by Figs. 7 and 8, which
compare the Gilbert damping obtained from sx, K, and 	
matrix elements. Figure 7 corresponds to the weak spin-orbit
limit, where it is found that in disordered ferromagnets sx

may grossly overestimate the Gilbert damping because its
interband contribution does not vanish even as SO tends to

zero. As explained in Sec. III, this flaw may be repaired by
adding the leading-order impurity vertex correction. The
torque-correlation formula is free from such problem be-
cause K vanishes identically in absence of SO interaction.
Thus the main practical advantage of K is that it yields a
physically sensible result without having to resort to vertex
corrections. Continuing with Fig. 7, at weak disorder the
intraband contributions dominate and therefore sx and K co-
incide; even 	 agrees because for intraband transitions at
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FIG. 7. �Color online� M2DEG: comparison of Gilbert damping
predicted using spin-flip and torque matrix element formulas, as
well as the exact vertex-corrected result. In this figure the intrinsic
spin-orbit interaction is relatively weak ��kF=0.05EF�0.06�0� and
we have taken uz=0. The torque-correlation formula does not dis-
tinguish between spin-dependent and spin-independent disorders.
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FIG. 8. �Color online� M2DEG: comparison of Gilbert damping
predicted using spin-flip and torque matrix element formulas, as
well as the exact vertex-corrected result. In this figure the intrinsic
spin-orbit interaction is relatively strong ��kF=0.5EF=5�0� and we
have taken uz=0.
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weak spin-orbit interaction the vertex corrections are unim-
portant. Figure 8 corresponds to the strong spin-orbit case. In
this case, at low disorder sx and K agree well with each other
but differ from the exact result because higher-order vertex
corrections alter the intraband part substantially. For a simi-
lar reason, neither sx nor K agrees with the exact 	 at higher
disorder. Based on these model calculations, we do not be-
lieve that there are any objective grounds to prefer either the
K torque-correlation or the sx spin-flip formula estimate of
�G when spin-orbit interactions are strong and �G is domi-
nated by interband relaxation. A precise estimation of �G
under these circumstances appears to require that the charac-
ter of disorder, including its spin dependence, be accounted
for reliably and that the vertex-correction Dyson equation be
accurately solved. Carrying out this program remains a chal-
lenge both because of technical complications in performing
the calculation for general band structures and because dis-
order may not be sufficiently well characterized.

Analogous considerations apply for Figs. 9 and 10, which
show results for the four-band model related to �Ga,Mn�As.
These figures show results similar to those obtained in the
strong spin-orbit limit of the M2DEG �Fig. 8�. Overall, our
study indicates that the torque-correlation formula captures
the intraband contributions accurately when the vertex cor-
rections are unimportant, while it is less reliable for inter-
band contributions unless the predominant interband transi-
tions connect states that are close in energy. The torque-
correlation formula has the practical advantage that it
correctly gives a zero-spin relaxation rate when there is no
spin-orbit coupling in the band structure and spin-
independent disorder. The damping it captures derives en-
tirely from spin-orbit coupling in the bands. It therefore in-
correctly predicts, for example, that the damping rate
vanishes when spin-orbit coupling is absent in the bands and

the disorder potential is spin dependent. Nevertheless, as-
suming that the dominant disorder is normally spin indepen-
dent, the K formula may have a pragmatic edge over the sx

formula in weakly spin-orbit coupled systems. In strongly
spin-orbit coupled systems there appears to be little advan-
tage of one formula over the other. We recommend that in-
terband and intraband contributions be evaluated separately
when �G is evaluated using the torque-correlation formula.
For the intraband contribution the sx and K lifetime formulas
are identical. The model calculations reported here suggest
that vertex corrections to the intraband contribution do not
normally have an overwhelming importance. We conclude
that �G can be evaluated relatively reliably when the intra-
band contribution dominates. When the interband contribu-
tion dominates it is important to assess whether or not the
dominant contributions are coming from bands that are
nearby in momentum space, or equivalently whether or not
the matrix elements which contribute originate from pairs of
bands that are energetically spaced by much less than the
exchange spin splitting at the same wave vector. If the domi-
nant contributions are from nearby bands, the damping esti-
mate should have the same reliability as the intraband con-
tribution. If not, we conclude that the �G estimate should be
regarded with caution.

To summarize, this paper describes an evaluation of Gil-
bert damping for two simple models: a two-dimensional
electron-gas ferromagnet model with Rashba spin-orbit inter-
actions and a four-band model which provides an approxi-
mate description of �III, Mn�V of ferromagnetic semiconduc-
tors. Our results are exact in the sense that they combine
time-dependent mean-field theory6 with an impurity ladder
sum to all orders, hence giving us leverage to make the fol-
lowing statements. First, previously neglected higher-order
vertex corrections become quantitatively significant when
the intrinsic spin-orbit interaction is larger than the exchange

0.00 0.10 0.20 0.30 0.40 0.50
1/(εFτ)

0.00

0.10

0.20

0.30

0.40

0.50

α G

p=0.4nm
−3

(εF=380 meV) ; x=0.08 ; u
z
=0

s
x

Λ
K

FIG. 9. �Color online� GaMnAs: comparison of Gilbert damping
predicted using spin-flip and torque matrix element formulas, as
well as the exact vertex-corrected result. p is the hole concentration
that determines the Fermi energy EF and x is the Mn fraction. Due
to the strong intrinsic SO, this figure shows similar features as those
of Fig. 8.
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FIG. 10. �Color online� GaMnAs: comparison of Gilbert damp-
ing predicted using spin-flip and torque matrix element formulas, as
well as the exact vertex-corrected result. In relation to Fig. 9 the
effective spin-orbit interaction is stronger due to a larger p and a
smaller x.
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splitting. Second, strong intrinsic spin-orbit interaction leads
to the supremacy of intraband contributions in �Ga,Mn�As,
with the corresponding monotonic decay of the Gilbert
damping as a function of disorder. Third, the spin-torque
formalism used in ab initio calculations of the Gilbert damp-
ing is quantitatively reliable as long as the intraband contri-
butions dominate and the exchange field is weaker than the
spin-orbit splitting; if these conditions are not met, the use of
the spin-torque matrix element in a lifetime approximation

formula offers no significant improvement over the original
spin-flip matrix element.
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